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It is shown that the Fokker-Planck operator can be derived via a projection- 
perturbation approach, using the repartition of a more detailed operator A ~ into 
a perturbation L~~ and an unperturbed part Lie 0. The standard Fokker-Planck 
structure is recovered at the second order in 5e~, whereas the perturbation terms 
of higher order are shown to provoke the breakdown of this structure. To get 
rid of these higher order terms, a key approximation, local linearization (LL), is 
made. In general, to evaluate at the second order in &o the exact expression of 
the diffusion coefficient which simulates the influence of a Gaussian noise with a 
finite correlation time ~, a resummation up to infinite order in r must be carried 
out, leading to what other authors call the best Fokker-Planck approximation 
(BFPA). It is shown that, due to the role of terms of higher order in 5~ the 
BFPA leads to predictions on the equilibrium distributions that are reliable only 
up to the first order in z. The LL, on the contrary, in addition to making the 
influence of terms of higher order in 5~ vanish, results in a simple analytical 
expression for the term of second order that is formally coincident with the com- 
plete resummation over all the orders in z pro'~ided by the Fox theory. The 
corresponding diffusion coefficient in turn is shown to lead in the limiting case 
r--* oo to exact results for the steady-state distributions. Therefore, over the 
whole range 0 ~< z ~< oo the LL turns out to be an approximation much more 
accurate than the global linearization proposed by other authors for the same 
purpose of making the terms of higher order in 5f 1 vanish. In the short< region 
the LL leads to results virtually coincident with those of the BFPA. In the 
large-r region the LL is a more accurate approximation than the BFPA itself. 
These theoretical arguments are supported by the results of both analog and 
digital simulation. 
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1. I N T R O D U C T I O N  

The problem of eliminating irrelevant variables plays a central role in 
several fields of investigation ranging from physics to chemistry, biology, 
astrophysics, and so on (for recent reviews see, e.g., ref. 1). This is a subject 
characterized by many facets and such subtle conceptual difficulties that for 
the sake of clarity it is convenient to focus on very simple systems. Let us 
consider the simple system described by 

dx/dt = ~o(x) + ~(x)~ (1.1) 

and let us make the usual assumption (2 14) that ~ is driven by 

d~/dt = -73 + f ( t )  (1.2) 

f ( t )  is a white Gaussian noise described by 

(f(O) f ( t )  ) = 2Q6(t)= 27(~2)eq ~(t) (1.3) 

The main purpose of this paper is to discuss the physical condition 
under which it is possible to describe the stationary properties of the 
system of equations (1.1) and (1.2) in terms of an effective Fokker-Planck 
equation concerning the variable x alone. 

After contraction over the variable ~, the resulting equation of motion 
for the variable x turns out to be non-Markovian, thereby seemingly 
preventing us from using a Fokker-Planck equation, which is Markovian 
in nature. We shall show that, in spite of this, an effective Fokker-Planck 
description can be used to make correct predictions on the equilibrium dis- 
tribution of x over a surprisingly extended range of values of the parameter 

- 1 /~  ( 1 . 4 )  

which we shall refer to as the noise correlation time. 
Our approach to this effective Fokker-Planck equation is of a pertur- 

bative nature, using the repartition of the complete Fokker Planck 
operator 50 to separate the bidimensional system of equations (1.1) and 
(1.2) into a perturbation 501 and an unperturbed part 50o. 

For  each perturbation order in 5~ to be expressed through simple 
analytical equations, we must have recourse in general to a further expan- 
sion over the parameter ~. It is thus evident that the approach to the effec- 
tive Fokker-Planck equation relies on a double perturbation expansion 
over 501 and r. The resummation up to infinite order over v while keeping 
the expansion over 50 at the second order is proven to coincide with the 
so-called best Fokker-Planck approximation (BFPA). (12 15) Note that the 

at the second order in 501 does not affect the Fokker-Planck structure. 
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On the contrary, the expansion over ~1 at the fourth order results in a 
breakdown of the standard Fokker-Planck structure. To get rid of the 
influence of these corrections, HanggietaL (7) proposed a linearization 
assumption which has indeed the effect of making these higher order terms 
vanish. 

In this paper we show that the global linearization of Hanggi et al. ~7~ is 
a poor  approximation, which turns out to be totally unable to predict such 
an interesting effect as the transition from a one-mode to a two-mode 
distribution induced by the color of noise, which is an incontrovertible 
result of our analog and digital simulation techniques. 

We show that a much more satisfactory way of getting rid of the terms 
of higher order in 5~ is to make the assumption of local linearization (LL). 
This assumption has the twofold effect of making the terms of higher order 
in ~ vanish and of providing a straightforward resummation up to infinite 
order over ~. The resulting Fokker-Planck equation coincides with that 
recently proposed by Fox. (9) Our theory shows, however, that in spite of 
the pessimistic view of Fox, according to whom the use of this 
Fokker-Planck equation should be restricted to the short-v region (9) it has 
a surprisingly extended regime of validity and for r ~ Qc the steady-state 
distribution turns out to coincide with the exact solution whereas the 
BFPA is correct only up to the first order in r. 

Our theoretical arguments are supported by the results of both analog 
and digital simulation. 

The outline of this paper is as follows. Section2 is devoted to 
illustrating the general aspects of our projection method. In Section 3 the 
problem of the resummation over ~ at the second order in ~1 is discussed. 
Section 4 is devoted to deriving the analytical expression of a crucial con- 
tribution at the fourth order in ~1, which is comparable to the term of 
second order in ~ of the BFPA. This is a central section, which leads us 
naturally to the LL approximation. In Section 5 we show that the LL 
approximation predicts exact results for ~ ~ oo. Section 6 supports our 
theoretical arguments by results of both analog and digital simulation 
(details on these techniques are provided in the Appendix). Concluding 
remarks on our results are found in Section 7. 

2. T H E  P R O J E C T I O N  M E T H O D  

The first step of the projection method consists in writing the 
Fokker-Planck equation associated with Eq. (1.1). This reads 

~ p(x, 4; t)= (Y'~ + Yb + ~l) P(X, 4; t) (2.1) 
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where 

5oa- ax q~(x) 

5ob=~ ( ~ +  (~-2>oq a@~ ) 

5o,= -r 

(2.2) 

and p(x, ~; t) is the probability distribution of the variables x and ~ at time 
t. The present approach is a perturbation theory with a perturbation term 
defined precisely by s176 Note that the explicit form of 5oh of Eq. (2.2) is 
consistent with the Langevin equation of Eq. (1.2), implying both that 
{~(0) ~(t)) is characterized by an exponential decay and ~ is a Gaussian 
noise. 

The second step consists in writing Eq. (2.1) in the corresponding 
interaction picture (5Ol is the natural interaction term). We thus have 

where 

~ (t) = 5o,(t) F(t) 

r = e x p (  - 5~ t )  p(t) 

5o1(t) = exp(- 5oo t) 5~ exp(soo t) 

(2.3) 

(2.4) 

(2.5) 

5~ = 5O, + 5oh (2.6) 

The third step consists in applying to Eq. (2.3) the projection techni- 
que of Zwanzig (16) via the projection operator defined by [sobPeq(~)= 0] 

Pp(x, ~; t) = poq(r f d~ p(x, ~; t) (2.7) 

which leads to an equation of motion for 

~(x; t) = f d~ O(x, ~; t) 

with the following form: 

~(x; t) = ~o~(x; t) + f0 K(t - s) ~(x; s) ds 
Ot 

;o = 5oaa(x; t) + K(s) a(x; t - s) ds 

(2.8) 

(2.9) 
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where 

K(t - s) = peql(~) e x p ( - ~ u t )  P~(t)  

• "6-~ [ f: dt' (1-  P) ~(t ' )]  (1-  P) =LP~(s) Ppeq(~) 

= p,ql(~) p5r exp(~o t) 

I;s 1 x ~-~ d f (1 - -P)~ l ( t '  ) (1--P) exp(-~.~os)~Ppeq(~) 

(2.10) 

The arrows denote that we are dealing with a time-ordered exponential. 4 
Note that we neglected the preparation term, 5 since we herein focus on the 
x-equilibrium distribution which is independent of that. 

By expanding the ordered exponential in a Taylor power series and by 
employing the invariance of the multitime stationary correlation functions 
by time translation, one can write K(so) as follows: 

K(so) = p~l(~) PYl exp(~oSo)( 1 --P)  =~ai PP~q(~) 

"~ Peq 1'~) ~ ;~Ods 1 ;~l ds2 f~l dSn 

• P~x exp(~oSo)(1 - P )  ~ ( s l )  

• (1 - p )  ~x(S._ 1)(1 - P )  ~(s.)(1 - P )  ~Ppoq(r (2.103 

Upon adopting this expression for K(s), Eq. (2.9) looks like that 
recently used by Sancho et al. ~2~ 

To get rid of the time-convoluted nature of Eq. (2.9), we make the 
following approximation: 

K(s) a(x; t - s )ds~  dsK(s) exp[-(~a+D)s] a(x;t) (2.11) 

The operator D is introduced to take into account the fact that the history 
of a(x; t - s) (for s > 0) not only depends on the unperturbed operator Lea, 
but it is also dependent on the diffusion process geerated by the time-con- 
voluted term itself. However, the operator D will exert its influence on the 
distribution a(x; t) only from the fourth order in ~1 on. Note indeed that 

4The time-ordered exponential is automatically involved when applying the Zwanzig 
approach to the interaction picture (see, e.g., ref, 17). 

5 The problem of the preparation term has been widely studied (see, e.g., ref~ 18). 
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the lowest order contribution to both K(s) and D is of the second order in 
5~. Thus, in the next section, devoted only to the second order in 5r we 
disregard D and we use the following approximation: 

K(s) a(x; t - s )  "~ ds W(s) a(x; t) (2.11') 

where 

W(s) = K(s) exp( - SPas ) (2.12) 

At the second order in 2'i, W(s) of Eq. (2.12) must rely on the following 
approximate expression for K(s): 

K(t - s) = Peql(~) P5~ 1 exp(~C~~ t)(1 - P) 

z exp(-~oS)  S1Ppeq(~) (2.13) 

In conclusion, at the second order in 2'1, we have 

0 0 ds)l a(x; t) (2.141 ~t a(x; t)= [ -  -~x ~~ + ( f~ W(s) 

with W(s) defined by Eqs. (2.12) and (2.13). 
Equation (2.14) with W(s) defined by Eqs. (2.12) and (2.13) is easily 

recognized to coincide with the second-order cumulant expansion recom- 
mended by Mukamel et al. ~19) to study Gaussian processes. It must also be 
stressed that Eq. (2.14) with W(s) defined by Eqs. (2.12) and (2.13), when 
used to determine the time evolution of (xn(t)), appears to be clearly 
related to the equation of motion proposed by van Kampen. ~2~ This can be 
made clear by making explicit Eq. (2.14) in the case where ~a and 
are given the form of Eq. (2.2). In this case we obtain that Eq. (2.14), 
supplemented by Eqs. (2.12) and (2.13), reads 

a 
at a(x; t) = 5~aa(x; t) 

+ ds(~(O)~(s))~xOeXp(~=s)-~xOeXp(s ) a(x; t) 

(2.15t 

where ( . - . )  means average over the equilibrium distribution Peq(~) and 
~ ( t ) = e x p ( ~ + t )  [-note that in the stationary case, (~ ( s )~ (0 ) )=  
(~(t) ~ ( t - s ) ) ,  which make complete the equivalence with Eq. (10.41 of 
ref. 20 once the upper limit of time integration t is replaced by infinity]. 
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The problem under investigation in this paper is characterized by the 
two perturbation parameter D = (~2)v (intensity of diffusion) and z (noise 
correlation time). It is generally thought (see, for instance, the general 
discussion of ref. 20) that both parameters must be kept very small for 
Eq. (2.14) [supplemented by Eqs. (2.12) and (2.13)] to work. We shall 
show, on the contrary, that if D is kept small, a condition of local 
linearization holds which makes it possible to explore successfully even the 
iong-r region (see Section 4). 

3. A N  E X P A N S I O N  O V E R  ALL O R D E R S  IN T 

In this section we show how to carry out the resummation over all 
orders in z at the second order in 5~ 

We introduce an exponential exp[H(x)s], which from a purely formal 
point of view allows us to write 

8 8 8 
8--~ 4s(x) exp(5~ ~x ~(x) exp( - L~as ) = ~xx ~9(x) ~xx ~9(x) exp[H(x)s] (3.1) 

Let us consider the superoperator ~ defined by 

5~A  = SflaA- A~a (3.2) 

where A denotes a generic differential operator. We can formally write 

e x p ( ~  t)A = (1 + 5~ + I(5~ 2 t 2 + ..-)A 

= A(1 + H~l)t + 1HI2)t2 + ...) 

which can be written as 

thereby providing 

e x p ( ~ t ) A  = A exp(Ht) 

exp(~at)A = A exp(Ht) exp(Sat) 

(3.3) 

(3.4) 

(3.5) 
A exp( - LPat ) = exp( - ~q~at)A exp(Ht) 

Equation (3.1)is obtained precisely from Eq. (3.4) with A = (8/8x)~O(x). 
From Eq. (3.3) we see that the exponential exp(Ht) is defined through 

its expansion in a Taylor series 

exp(Ht) = 1 + H(~)t + �89 + . . .  (3.6) 

822/52/3-4-28 
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with 

In the case under study, A = (8/Ox) ~(x), we find 

H(~ = n(~ i= O, 1, 2 

n~~ = ~p(x) (3.7) 

~(i)(x)-~-~ot(x)7~(i 1 ) ( X ) -  /'t (i 1)'(X) (p(X), i > 0  

The property of Eq. (3.1) can be used to rewrite Eq. (2.15) (with the 
upper limit of integration t replaced by infinity) as follows: 

D~---~(x)-~x~(X)~l -- r H ( x ) ] -  a(x; t) (3.8) ~t~(x; t)= {_ ~ ~(x) + a 1) 

or in the equivalent form 

~a(x; t )=[-~x~O(x)+D~---~b(x)~-- -~b(x) lcr(x; t )  (3.9) 

O ( x ) = ~ ( x )  ~ rnH(")(x) (3.10) 
n=0 

Equation (3.9), supplemented by Eqs. (3.10) and (3.7), is known as the best 
Fokker-Planck approximation (BFPA). ~12 15) 

Resummation up to infinity over ~ means expressing the series of 
Eq. (2.10) via an analytical expression. For instance, in the special case of 
the periodic potential 

~o(x) = k cos(~OoX ) (3.11 ) 

with ~ ( x ) =  1, it is straightforward to show that 

O(x) = [ 1 - ko~o[sin(~OoX) ]/7 ] [1 - ( k o ) o / 7 )  2 ] - 1  (3.12) 

Peacok-Lopez et al. (2~ succeeded in providing an analytical expression for 
q~(x) even in the case where q~(x)= e x - / ~ x  3 (e > 0). 

We show, however, in the next section that the exact expression of 
O(x), when used to derive the equilibrium distribution, provides incorrect 

/7(0)= 1 (3.6') 

/7~o= (1/A)(Sf~)'A, i >  1 (3.6") 
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information on the contributions to it at orders higher than the first in ~. 
Thus, it will turn out to be convenient to use what seemingly is an 
approximation to the exact expression of ~(x). ~14'15) 

4. THE C O N T R I B U T I O N  TO D I F F U S I O N  AT THE FOURTH 
ORDER IN 

From a purely formal point of view Eq. (2.9) can be rewritten as 
follows [see Eqs. (2.11) and (2.12)]: 

0 q)(x)+fo W ( s ) e x p [ - Q ( x ) s ] d s } a ( x ; t )  (4.1) 

where [we recall that 2'a = -(~?/~x)~0(x)] 

exp[ - Q(x)s ]  = exp(5('aS ) exp[ - (Soa + 13)s] (4.2) 

and 13 is precisely the diffusion operator we want to built up. Its implicit 
expression is 

D - W(s) exp[ - Q(x)s ]  ds (4.3) 

We aim at making a calculation up to the fourth order in the inter- 
action 5~ of Eq. (2.2). Thus we write 

2 ;o = W2(s) exp[ - Q2(x)s]  ds + W4(s) ds (4.4) 

where W2 and W4 are the second- and fourth-order contributions to the 
operator W defined by Eqs. (2.12) and (2.10'), and Q2(s) is defined by 

exp[ - Q2(x)s]  ~- exp(~as) exp[ - (~a + Dz)S] (4.5) 

This definition of Q2 now makes sense, because D2 is defined by 

D2 = W2(s) ds = D -~x O(x) ~(x) (4.6) 

As to the second term on the rhs of Eq. (4.4), we note that from the 
fourth-order contribution to K(so) of Eq. (2.10') and by using Eq. (2.12) we 
obtain 

;00f2 , W4(so) = dsl ds2 X(so, sl, s2) Y(so, sl, s2) (4.7) 
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where 

X ( s  O, s 1 ,  32)  = (~eWb('o sl)~e~b(Sl s2){e~ees2 { ) 
_ (~e~SO~e~b(,~ ,2)) ( ~e~S~ ) (4.8) 

Y(so, sl, $2) =~'~ O(x) 63 e s  a(so- sl) 8-7 O(x) e w~(*~ ,2) 

8 ~ 63 
x ~xxO(X) e ~ ~xO(X) e i~s0 (4.9) 

The calculation of X can be done with the standard rules, consisting of 
applying Lfb on the left. (=) The final result is 

X(So, Sl, S2) = 2(~2)  2 e -~(s~ Sl)e-2Y(*l-S2)e 7,2 (4.10) 

More subtle difficulties are involved with the calculation of Y(so, sl, s2). 
First, we apply the commutation rule of Eq. (3.5). This allows us to write 
Eq. (4.9) as follows: 

63 
Y(so, Sl, s2) = O(x) -~x g,(x) e ms~ s~) 

63 II s s 63 x ~x tfl(x) e (o ')-~x ~ll(x) e rl'~ (4.11) 

To be in a position to do the integration over the times So, sl, and s2 
associated with Eqs. (4.7) and (4.4) (second term on the rhs of this latter 
equation), it is convenient to put together the exponentials exp(Hs) 
appearing in Eq. (4.11). We must thus solve the problem of commuting 
exp[H(x)s] with 8/8x. To this purpose, we are naturally led to define a 
hierarchy of "functions" H(n) [/ /(0) has to be identified with H defined by 
Eqs. (2.6) and (2.17)] by remarking that 

8 emm~= 8 [ 1 ] 8-7 8---x 1 + H~ + H(2)(n) s 2 + .. .  

= l + g O ) ( n ) s + ~ H ( 2 ) ( n ) s 2 + . . .  ~x 

1 + [H(l)'(n)s +-~ H(2)' (n) s2 + . . .]  

=em,)s 8 +sHO),(n){ 1 + [H(a),(n)]/[2H(1),(n)] + ...} (4.12) 
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This shows that the we can use the commutation rules 

8 era.) s = sH(1),(n ) era.+ 1), + en(.). 8 (4.13) 
63-7 

6q H(n's 1 e m ' ) ' - - = e  J - - s H  ( )'(n)e m'+~)" (4.14) 
63x 

provided that the term n + 1 of the hierarchy is defined in terms of the 
preceding one as follows: 

H(ml'(n+ 1)=  [U(m+l) ' (n)] /{ (m+ 1)[H(m)'(n)]}, m, n>/O (4.15) 

By using Eqs. (4.13) and (4.14), we put the last and the first exponen- 
tial exp(Hs) of Eq. (4.11) in the same central position as e x p [ H ( s o - s 2 ) ] ,  
at the price of producing third- and second-order derivatives (in addition 
to the fourth-order derivatives which naturally appear at the fourth order 
in 2,~ 

Y(so, Sl, Sz) = tp(x) -~x ~h(x) O(x) e m3"~ Sl s2) 63 
63--; 

63 63 
+ 7x O(x) ~,(x) -~x O(x) e m2s~ ~' "2)O(x ) H(1)'So erm)'~ 

63 
~'(x) ~x O:(x) H(') ' (x)(so--Sl)  

8x 

eml)(so- s~) + H(2s 0 s2) • O(x) 

63 @(X) ~X flY2(x) H(1)'(x)(so--S1) 
63x 

x e Lr(1)(s~ Sl)+ll(s~ H(~)'So (4.16) 

The four terms on the rhs of Eq. (4.16) have to be multiplied by X 
of Eq. (4.10) and then the integration over So, Sl, and s2 necessary to 
determine 

f o  W4(so) dso 

must be done, generating four terms which we shall refer to as ~1, e2, c%, 
and ~4, respectively. We now remark that cq is a term with a fourth-order 
derivative proportional to D2(alr  +a2z  2 -l-a3r3 + ...). From the first term 



962 Faetti et  al. 

on the rhs of Eq. (4) we draw terms which will be proven to cancel with cq 
up to the order D2~ 2. 

From our demonstration it will appear plausible that the cancellation 
holds up to infinite order in r. However, we are interested only in 
recovering from the rearrangement of 

f f  W2(s) e x p [ -  Q(x)s]  ds 

the first term on the rhs of Eq. (4.4), third-order derivatives proportional to 
D2z 2 (third-order derivatives proportional to D2r n with n > 2  would be 
replaced with the renormalization arguments used later in this section by 
standard diffusion terms proportional to D~ n, i.e., of order higher than that 
to which we limit ourselves in this paper, Dr2). The terms e2 and ~3 are 
precisely third-order derivatives proportional to D2r 2 and we must focus 
our attention on them. The third term, c~4, on the contrary, is a second- 
order derivative proportional to D2~. This term can be neglected simply by 
keeping the noise intensity very weak, in that the standard term stemming 
from the calculation of the order 5( '2 is proportional to D. 

Let us focus our attention on the first term on the rhs of Eq. (4.4). Let 
us make the assumption of neglecting terms of order higher than D. The 
terms of order higher than D must cancel with contributions stemming 
from the perturbation calculation at the order ~ 6 ,  5o~, and so on (in this 
paper we limit ourselves to a calculation up to the order ~4).  

By developing the exponential e x p ( - Q 2 s  ) as defined by Eq. (4.5), we 
obtain (under the assumption above of neglecting contributions of the 
order D" with n >/2) 

fo~ W2(s) exp[--Q2(x)s ] ds 

= g/~(O) + [ d  g/~(z)]~ = o W2(O) 

1 [-d 2 l~/2(Z)]z= ~ + [ 

=D~x~9(x)  O ( x ) ~ - - ~ +  Dr - ~xO(X) O(X)( l_z/ / )2  

x ~x0(X ) ~k(x)]---L-- ~ -~--s 0 ( x ) v ( I _ T H )  3 

x ~xx ~O(x) 0(x) 1 -- z/-/c3x 0(x) (4.17) 
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[-The symbol W2(z) denote the Laplace transform of W2(t) at the 
frequency z.] The first term on the rhs of the last equality is the standard 
contribution of the BFPA. The second term on the rhs of the last equality, 
Dr {..- }, cancels exactly (up to the second order in r) with c h.  This means 
that ~2 and ct 3 are the only relevant corrections to the BFPA. 

We thus obtain 

a o ( x ; 0 = I  a a ~ 1 8t - ~xx ~p(x) + D ~xx qJ(x) ~(x) 1 - r-------H 

3 22 a a O(x)~O(x)2(x)rt.),]~(x;O + 2D r ?-TxO(X)Tx (4.18) 

The last term on the rhs of Eq. (4.18) derives from ~2 + e3. 
From Eq. (4.18) we immediately see that a natural way of getting rid 

of the nonstandard diffusion term on the rhs is to assume 

HV)'(x) ~- 0 (4.19) 

This does not mean that H(1)(x) is constant throughout the whole range: 
- o o  ~< x ~< + oo. We only need that D be weak enough to make the dif- 
fusion around a certain position x very slow and to oblige the Brownian 
particle to "feel" different values of H ~1) virtually constant for an extended 
period of time. Of course, particles in different regions are allowed to "feel" 
different values of H(1)(x). By analogy with the additive case, where [due 
to the definition of Eq. (3.7)] H(1)(x) = q~', we call this approximation local 
linearization (LL). This approximation eliminates the terms of order higher 
than the second in 5~ producing the same effect as the global 
linearizations 

H(1)(x) ~_ (H(1)(x)) (4.20) 

//V)(x) -~/7(~)(xs) (4.21) 

[where xs=  ( x ( t ) ) ]  suggested by refs. 7 and 23, respectively. 
On the other hand, if Eq. (4.19) holds, from Eqs. (3.7) we immediately 

see that qS(x) of Eq. (4.10) reads 

~(x)  = O(x)/[1 - rHU)(x)] (4.22) 

which coincides precisely with the Fox theory. (9) 
If the LL approximation does not hold and the fourth-order correc- 

tion term of Eq. (4.18) must be taken into account, this corrects the BFPA 
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at the second order in ~. To show this, let us consider the white noise 
approximation to the BFPA, 

0 a ( x ; t ) = I  8 0 ~-x ] 8-7 -- ~x ~p(x) + D ~xx ~9(x) ~(x) a(x; t) (4.23) 

It is immediately seen that the corresponding equilibrium distribution 
aeq(X) satisfies the relation 

q)(x) - D~(x) ~'(x) 
O'eq(X) -- O~2(x) O'eq(X ) (4.24) 

Let us assume that r is so short as to make the equilibrium distribution of 
Eq. (4.18) very close to the white noise approximation of Eq. (4.24). 
Neglecting terms with second-order derivatives proportional to D 2 and 
using Eq. (4.24), we obtain that the last term on the rhs of Eq. (4.18) can 
be transformed by the following series of obvious approximations: 

3 oZ,t.2 63 ~x 63 
5 ~x ~(x) ~(x) ~x 4J2(x) [/(')'(x) ~(x; t) 

3 8 0 0 
-~ - D2"r2 ~xx ~(x) ~b3(x)//(1)'(x) ~(x; t) 

2 ~ ~x 

3 22  0 0 63 
-~ 5 D ~ ~ ~(x) ~ ~,~(x) [/(x)'(x) ~ ,~o~(x; t) 

3 2 2 0 I/t(X) ~X ~3(X) H(1)'(x) ~o(x) -- D~I(x) ~f(x) 
~- -~ D ~ ~x D~2(x) O'eq(X; t) 

3 ~ 8 q~(x) - D~p(x) O'(x) 
: ff D2T 2 I//(X) ~XX ~3(X) llO)'(x) D~2(x) " t) 

63 
= g D~ 2 ~,(x) ?7 ~,(x) ~o(x) g<'(x) ~(x; t) (4.25) 

We thus obtain a contribution comparable to the second order in ~ 
provided by the BFPA. This is incontrovertible evidence that the 
equilibrium distribution provided by the BFPA is correct only up to the 
first order in ~. In the next section we show that the LL approximation, on 
the contrary, for r ~ oo leads to the exact steady-state distribution. 

5. S T U D Y  OF T H E  E Q U I L I B R I U M  D I S T R I B U T I O N  IN T H E  
I N T E R V A L  - oo ~<x~< +oo 

From now on we focus our attention on the additive case ~ ( x ) =  1 
with ~o(x)= ~ x - f i x  3 (~ > 0), which corresponds to a quartic potential. 
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Note that the general equilibrium solution of Eq. ().9) in the additive 
case is 

aeq(x) = Oo exp [_ 0 ~ dx' - log c0(x)] (5.1) 

To study the properties of this equilibrium distribution, we adopt the 
expression for cO(x) stemming from the LL approximation, 

l 
co(x) = (5.2) 

1 - r ~ 0 ' ( x )  

We make this choice for the following reasons: 

1. Equation (5.2) coincides up to the first order in r with the 
expression for cO(x) resulting from the BFPA. 

2. As already stressed by Fox, O) Eq. (5.2) leads to uniform con- 
vergence. 

3. The contributions of nth order in r with n > 1 stemming from the 
BFPA are not reliable (in the preceding section we showed that from the 
fourth order in ~1 we draw a contribution comparable to that of second 
order in r of the BFPA). 

4. For z--* o% Eq. (5.1) with cO(x) provided by Eq. (5.2) (i.e., the 
result of the LL approximation) leads to exact predictions. 

Properties 1-3 have already been shown. We must now prove 
property 4. 

When r is much larger than the relaxation time of x, the system is 
certainly given enough time to reach its deterministic equilibrium position 
at a certain value of 4, 

~ x - / ~ x  3 = - ~  (5.3) 

before ~ takes on new values. The probability for the Gaussian variable 
to be found between the values ~ and ~ + d~ is 

dpeq(~) = (2"c{ ~2 }eq) -1/2 e x p ( -  r  d~ (5.4) 

Note that from Eq. (5.3) we obtain 

43 = (3/~x 2 - ~) ax  (5.5) 

which leads us to determine the probability for the variable x to be found 
between x and x + dx via the expression 

dO-eq(X ) oc (3fix 2 - ~) e x p [  - (/~x 3 --  ~ x ) 2 / 2 ( 4  2 )eqJ  dx (5.6) 
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In other words, the equilibrium distribution of the variable x is 

O'eq(X ) OC ( 3 / 3 X  2 - -  ~ )  exp[ - ( / 3 x  3 - ~x)2/2 < ~ 2 }eq] ( 5 . 7 )  

When 3flX2--O~ <0,  we must a s s u m e  O'eq(X ) =0.  This can be justified by 
remarking that the solution of Eq. (5.3) is characterized by three roots, 
corresponding to two stable positions and an unstable one. With increasing 

(r <0 )  the unstable equilibrium position and the stable one on the 
positive side of x merge into one another at 

X = (Ot/3fl) 1/2 (5.8) 

while the stable position on the negative side reaches the value x =  
-2(~/3/3)1/2; the reverse effect takes places when r > 0. Stable and unstable 
equilibrium positions merge into one another at 

x = -(~/3/3) 1/2 (5.9) 

whereas the equilibrium position on the positive side of the x axis reaches 
the limit value x = 2 ( e / 3 / 3 )  m .  This shows that no stable equilibrium 
position is allowed between x = -(~/3/3) 1/2 and x = (e/3/3) m. On the hand, 
the transient time in this central region depends on the parameters ~ and/3 
and is finite. For ~ ~ c~ this transient time turns out to be negligible com- 
pared to the residence time of the particle in the side region. Thus we are 
led to 

O'eq(X ) (3(2 (3/3x 2 - c~) e x p [  - ( f i x  3 - ~ x ) 2 / 2 ( ~  2 ) e q " ] ,  

O'eq(X ) = 0 for 3fiX 2 < 

3/3 x2 > 
(5.10) 

Note that Eq. (5.1) with ~b(x) given by Eq. (5.2) for ~ ~ c~ leads precisely 
to the same equilibrium distribution as Eq. (5.10) (provided that we use the 
same convention when 3/3x2 < e). This is equivalent to proving property 4 
to be true. 

To discuss the physical properties of the equilibrium distribution 
predicted by the LL approximation, we examine separately the cases e > 0 
and ~ = 0. 

(i) ~>0 .  In the white noise limit the equilibrium distribution is 
characterized by two peaks symmetrically placed around x = 0  at x =  
+(e//3)1/2. Replacing Eq.(5.2) into Eq.(5.1) (i.e., using the LL 
approximation) and assuming the condition 

D ~ ct7/3 fl (5.11) 
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to be satisfied, we obtain that the distance between the two peaks increases 
upon increase of D. The peaks at x > 0 and x < 0 shift, respectively, toward 
larger and smaller values of x by the amount 

AXma x -~- 3(fl/o~)l/2O/F~)(l -Jc 2~/7) 2 ] (5.12) 

The maximum possible shift (compatible with the crucial condition z < I/c~) 
is then obtained when c~/7 = 1/2. 

From Eq. (5.12) we also obtain that for v--+ 0 

Z~Xma x = 3(fl/~)l/ZD/7 (5.13) 

which shows that no shift is exhibited in the white noise limit. 
For  r ~  o% on the contrary, we see from Eq. (5.10) that the 

equilibrium distribution is distinctly bimodal and the two peaks are shifted 
by the quantity 

ZJXrnax = 3(/~/0~)1/2 <~2)eq/O~2 (5.14) 

By using Eq. (5.14) and (5.12) we reach the conclusion that upon increase 
of ~ with D kept constant, Axm~x increases and after reaching a maximum 
value decreases so as to vanish again for r --, oe. Note indeed that if D is 
kept constant, (3  2).q becomes vanishingly small in the limiting case ~ = 0. 
If, on the contrary, (~2)e  q is kept constant, the shift AXmax attains a non- 
vanishing limit for r --+ oe. 

(ii) c~=0. In this case the white noise limit is characterized by a 
monomodal  distribution. At finite values of r the equilibrium distribution is 
actually bimodal and this character becomes increasingly evident upon 
increase of r. This phenomenon has been noted by Lugiato and 
Horowitz (24) by using the version of the BFPA corresponding to the theory 
of the Barcelona group. ~ The result of Lugiato and Horowitz is therefore 
confined to the short-r region, whereas the LL approximation allows us to 
explore the whole range 0 ~< ~ ~< oe. 

Let us denote by _Xm~x the positions of the two peaks and call Po the 
value of a~q(X) at x = 0; let us denote by A the depth of the dip between the 
two peaks (Fig. 1). We then obtain that when the condition 

~O/~) 2 ,~ 1 (5 .15)  

is satisfied, Xmax and A/p o are given by (using the LL approximation) 

Xrnax~ (6D/'y) 1/2 (5 .16)  

Alp o ~ 9flD/? 2 (5.17) 
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Fig. 1. Schematic picture of the bimodal equilibrium distribution. 

This shows that for r --+ 0, Alp o becomes negligible, making the equilibrium 
distribution indistinguishable from a monomodal  distribution. 

In the limiting case r ~ ~ we obtain from the equilibrium distribution 
of Eq. (5.10) that the peaks generated by the color of the noise reach the 
limit 

2 2 Xma x = ( ] < ~  }eq//~2) 1/2 (5.18) 

By using Eqs. (5.16) and (5.18) we can see that if D is kept constant, than 
Xm,x (like Axma x of the case ~ r 0) must exhibit a nonmonotonic  behavior 
as a function of ~. From Eq. (5.16) we see that at ~ =0 ,  Xma x vanishes. 
Upon  increase of r, Xma x increases. Then it must reach a maximum value 
and decrease so as to vanish again for ~ ~ ~ ,  as indicated by Eq. (5.18). If, 
on the contrary, we keep ( ~ 2 ) e  q constant, Xmax reaches a nonvanishing 
limit for r ~ ~ .  

It  is straightforward to show that the BFPA does not attain the exact 
prediction of Eq.(5.10) for r - ~ .  Since the BFPA and the LL 
approximation lead to equilibrium distributions coinciding at the first 
order in r, their predictions must be virtually indistinguishable from one 
another in the short-z region. At moderately large values of ~ their predic- 
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tions start departing from one another, and from there on the LL 
approximation is expected to provide results systematically more accurate 
than the BFPA. 

6. C O M P A R I S O N  B E T W E E N  T H E O R Y  A N D  THE RESULTS OF 
A N A L O G  A N D  DIGITAL S I M U L A T I O N S  

This section is devoted to showing that the results of digital and 
analog simulation (details on these techniques are given in the Appendix) 
support the theoretical results of the preceding sections. 

Figure 2 illustrates that the theoretical predictions on the change of 
the peaks of the probability distribution upon increase of r are correct. The 
global linearization (7) cannot account for this interesting effect. 

The transition from the one- to the two-mode distribution predicted 
by the LL approximation is confirmed by the results of Fig. 3. We see that 
the agreement is remarkably good even in the case of extremely colored 
noise (~ = 22). In the short-r region the BFPA is indistinguishable from the 
LL approximation, whereas the global linearization (7) is grossly wrong. 

Of special interest are the results of Fig. 4 concerning the cosine case 
of Eq. (3.11). In this case the exact resummation of the BFPA is known 
[Eq. (3.12)]. We see from Figs. 4 that in accordance with our theoretical 
predictions the LL approximation turns out to be more accurate than the 
BFPA. 

C 

c ~ ~ 1 0  Ri 

R 

= vox x 3 

10 RC IORC RiC 
Fig. 2. The shifts of the peaks of the bimodal equilibrium distribution as a function of the 
correlation time z. (--) The result of the global linearization37) (- -) The prediction of the LL 
approximation. (�9 The results of digital simulation; (A) the results of analog simulation. 
D=0.5, a=l ,  fl=l. 
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Fig. 3. The transformation of a monomoda l  equilibrium distribution into a bimodal one as 
an effect of colored noise. ( - - )  The prediction of the global linearization. ~7) (- -) The prediction 
of the LL approximation..  ( � 9  The results of digital simulation; ( A )  the results of analog 

simulation. D = 0.5, ~ = 0, /3 = 1. 
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Fig. 4. Equilibrium distribution for the case of the sinusoidal potential of Section 3. ( - - )  The 
result of the global linearization. {7) (- -) The result obtained by using the LL approximation. 
(O)  The results obtained by using the expression for q~(x) of Eq. (3.12), i.e., the BFPA; ( O )  
the results of digital simulation. D = 0.25, k = 1, and ~o0 = 1. 
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7. C O N C L U D I N G  R E M A R K S  

This paper proves that the LL approximation is a satisfactory way of 
getting rid of the terms of higher order in 2 '  1 that provoke the breakdown 
of the Fokker-Planck structure and invalidate the BFPA at the order in 
higher than the first. For this approximation to be valid a weak diffusion 
coefficient is required. The LL approximation is much more accurate than 
the assumption of global linearization, (7) which is a rough assumption 
totally missing the rich variety of effects provoked by the color of noise. 
The only seemingly remarkable property of the global linearization 
concerns the prediction that aeq(0) is finite for any finite value of T, in 
accordance with the results of analog and digital simulation. We see from 
Fig. 2c that at the critical value ~ = 1/e the LL approximation results in a 
vanishing value of aeq(0), whereas both glogal linearization and experiment 
result in a finite value of aeq(0). Actually, the wrong prediction of the LL 
approximation in this case depends on the fact that qS(x)= 1/[1 -v~o'(x)] 
for z = 1/~ diverges at x = 0. At ~ < 1/cq a region with negative diffusion 
coefficient begins to appear around x = 0 and its size becomes larger and 
larger upon increase of ~, until it covers the whole interval -(~/3fl)m ~< 
x <<. (~/3fl) m at ~ = oe. 

Actually, this is not an artefact of the LL approximation. To make this 
aspect clear, note that at the second order in 2"1, Eq. (4.1) must be replaced 
by(25,26) 

~tO a ( x ; t ) = {  O~x c~Jo~O ~x - (p(x) + ~D _ ~9(x) O ( x )  
) 

e -E~-m~)3s ds[ a(x; t) 

(7.1) 

In general, this equation should be correct by the terms of higher order in 
5~ However, if D is small enough, the LL approximation, Hcu'= 0, holds 
and the terms of higher order in 2"1 vanish. On the other hand, the LL 
approximation obliges us to replace Eq. (7.1) with 

a(x; t )=  - -~x~O(x)+VDfo--~(x) ~(x) e-E~-u(u(~)]~ds a(x; t) 

(7.2) 

which is not affected by any pathology. Due to the fact that H(1)(x) is a 
standard function of x, the exponential exp[lI(1)(x)s] turns out to be 
always a positive number {the same property is not shared in general by 
the formal exponential exp[H(x)s] }. 

The pathological aspects above are consequences of the improper 
replacement of the upper limit of time integration t on the rhs of Eq. (7.2) 
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with infinity. Numerical integration of Eq. (7.2) in the critical correlation 
time region ~ > 1/~ [ ~ ( x ) =  1, ~0(x)= ~ x - ~ x 3 ] ,  where the diffusion coef- 
ficient around x = 0  tends to diverge for t-~ ~ and the stationary 
assumption (O/Ot) a(x; t ) = 0  no longer holds, shows (26) that Eq. (7.2) 
produces correct predictions through the whole interval 0 ~< z ~< Go. 

APPENDIX 

A1. Digital Simulation 

The computer simulation virtually used the same algorithm as that of 
ref. 11. The major difference is the Gaussian noise generator: due to reasons 
of speed, the algorithm used is the one described in ref. 27 (routine 
NORRAN of CERNLIB).  The routine is believed to be about five times 
faster than the Box-Mueller formula of ref. 11. 

Special attention has been devoted to the simulation of the sine poten- 
tial [-we fix in Eq. (2.34) ~0 o = 1 and k = 1 ]. The "particle" performing the 
random motion was allowed to diffuse from well to well: it is generally 
accepted that the simulation might become less accurate if the random par- 
ticle is allowed to evolve very far from the central well (in our case the well 
centered in ~/2). In the present situation, however, due to the low value of 
the diffusion coefficient herein considered in order to obtain the result of 
the next section, even letting the particle move freely, in no case during the 
course of each simulation did it move farther than two wells away from the 
one in ~/2. The rare events of a particle escaping from a well into another 
one are used to fix a new initial condition. In other words, if the particle 
escapes from a well centered at x = z~/2 into a well centered at x = 3~/2, this 
is equivalent to considering a new trajectory with the particle injected at 
x = 0. This expedient serves the purpose of avoiding the need for the par- 
ticle to reenter the tagged well from the side opposite to that of escape, 
thereby allowing the speed of our computer experiment to increase. In the 
simulation the time step was 10 -3 . Upon changing the initial seed to 
initialize the random generator, no significan change was obtained for the 
equilibrium distributions. 

A2. Analog Simulation 

The analog simulation of Eq. (1.1) with (~O(X)~-~X--flX 3 (~>O) and 
~o(x) = - f i x  3 was obtained using a minimum components technique. (28) In 
Fig. 5 we show the scheme of the simulation electric circuit. An operational 
amplifier is coupled with two Analog Device multipliers (AD534). The out- 
put of a noise generator was sent to a low-pass filter before being applied 
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Fig. 5. Scheme of the electr ic circui t  used to s imula te  the cases ~ > 0 (V0 = 1) and  e = 0 

(V 0 = 0). This  scheme shows how to relate  the co r r e spond ing  s tochas t ic  differential  equa t ions  
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to the input of the analog device. The cutoff frequency of the filter gives the 
value of the time correlation of the noise. Time scaling is necessary so as to 
refer to the parameters of the case ~ o ( x ) = e x - ~ x  3 (~>0) and 
q)(x) = -/?x 3. More details can be found in ref. 28. We send the output of 
the differential operational to a computer so as to get the statistical 
distribution O'eq(X ). Our device gives the simulation of the bistable system 
(c~>0 or the "x 4 potential" system (~=0) by changing the voltage Vo 
applied to the circuit (see the equation in Fig. 5). Thus, by putting Vo close 
to zero we get the x 4 potential; otherwise we put V0 = 1 for the bistable 
potential. 
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